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Scattering properties of a cut-circle billiard waveguide with two conical leads
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We examine a two-dimensional electron waveguide with a cut-circle cavity and conical leads. By consid-
ering Wigner delay times and the Landaueittiker conductance for this system, we probe the effects of the
closed billiard energy spectrum on scattering properties in the limit of weakly coupled leads. We investigate
how lead placement and cavity shape affect these conductance and time delay spectra of the waveguide.
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[. INTRODUCTION Beyond simply allowing us to probe eigenenergies of the
closed billiard as scattering resonances, lead placement itself
The scattering properties of ballistic electron waveguidesan alter the symmetry properties of the closed billiard. We
have been studied by a number of authors, but primarily irwill study the effect of symmetries by investigating how the
the semiclassical regime, where resonances strongly overldj®sitions of the leads affect the behavior of the Fano reso-
[1,2]. Several experimen{s8] have shown that the shape of nances.
the waveguide cavity can strongly affect the conductance, In Sec. Il, we will discuss cavity states and the scattering
depending on whether the shape induces integrable or chatates that are used to obtain the scatteSngatrix for a
otic motion[4]. In this paper, we investigate the scatteringSystem with conical leads. In Sec. Ill, quantum properties of
properties of an electron waveguide whose scattering cavitihe closed circular cavity with a cut will be reviewed. In
strongly resembles that of a quantum dot. We investigate thigecs. IV and V, we will look at the behavior of conductance
system in a regime where the resonances are well separatdfild Wigner delay times for waveguides with full-circle and
in energy, and we look at the effect of distortions in shapecut-circle cavities. Leads will be attached to cavities sym-
and changes of lead placement, which change the symmetfpetrically or asymmetrically. Finally, in Sec. VI, we will
of the scattering cavity, on the behavior of the scatteringsummarize our results. A short discussion of the numerical
resonances. method used for our computations is given in the Appendix.
The geometry of the waveguide we consider in this paper
is shown in Fig. 1. The scattering system consists of a cavity Il. SCATTERING WAVE FUNCTION AND S MATRIX
with two cone-shaped leads attached, which we will treat as
infinitely long. The walls of both the cavity and the leads are
assumed to be infinitely har@nfinite potential walls. The
cavity has the shape of a circle of radi@sbut with a seg-
ment of the wall, subtended by an anglereplaced by a flat
segment which we call the cut. The opening angles of the (V2+ KW (p, )=
leads areA 6, and A 6,. The angular positions of the center
of the cut and the center of the lead openings are denoted by

Matter waves inside the waveguide pictured in Fig. 1 are
governed by the Schdinger equation, which, in polar coor-
dinates, takes the form

# 19 1 &

__+ _
&pz p dp p2<9<p2

{, 01, and 65, respectively. 2mE
The effect of conical leads has already been studied in T )‘I’(P.QD)
earlier works(e.g., Ree and Reichb], Perssoret al.[6], and
Berggren, Ji, and Lundbefd]). Compared to straight leads =0. 1)

(which have most commonly been used in publications on

waveguidey conical leads are more similar to the electronHere, k=2m E/42 is the wave vector of the particle wave,
sea which provides the source of electrons in most experim is the particle massj is Planck’s constant, anfl is the
ments. As shown in Ref5], conical leads allow tunneling energy. The geometry of the system, which determines its
resonances through the waveguide cavity for energy regimescattering properties, is taken into account by the boundary

in which conduction is prohibited for straight leads. condition that the scattering wave functidn vanish on the
A classical particle moving in a closed billiard whose walls.
shape is that of a circle with a c(ihe shape of our cavily The solutionW is computed numerically by expanding it

will display a rich range of chaotic behavior as the size of theinto suitable basis functions, and determining the expansion
cut is varied 8]. Quantum signatures of the classical chaos incoefficients from the Schdinger equation and its boundary
this billiard have been studied in R¢B]. One question we conditions by the method described in the Appendix. Below,
will be interested in is how well the scattering process canwe discuss the expressions frin the different regions of
probe this dynamics of the closed cavity. In the low-energyour system. In Sec. Il A, we look at the wave function inside
regime we will consider, we expect that the waveguide willthe cavity. The wave function inside the leads is considered
exhibit well-separated Fano resonances at energies close itoSec. Il B, where we will also define the scatterfdmatrix

the energy eigenvalues of the closed billiard. of the waveguide.
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¢o=C which is separable into coordinates longitudinal and trans-
versal to the lead walls. As a further condition, the transverse
part has to be a standing wave vanishing on the walls and the
longitudinal part describes a wave propagating towards
(away from) the cauvity.

For the conical shape of our leads, the longitudinal and
transversal coordinates are just the polar coordinatesd
¢, respectively. Thus, the separation ansatz with a standing
wave in the transverse directiorm€1,2,...) takes the
form

aTT (,D_0i+7

AG, !

%)

=N u “(p)sin (5)
where 6; locates the angular position of the center of itie

FIG. 1. Geometry of the scattering system with cavity radus 1€8d, R<p<<, and 6, — A 6i2< <6, +A6;/2 (i=1, 2 for
lead positions a®, and ,, lead opening angles §; andAd,, cut  leads 1 and 2, respectivelyN is a (yet unknown constant

position atZ, and cut anglev. factor.
Inserting this into Eq.4) leads to an equation for the
A. Cavity states radial part of the wave function,
In the interior region of the cavity, the solution of E4) (?2 i (am
can be written as p2— +p— +k2p2|ul* (p)=0. (6)
ap? " dp A6,
n
Y
‘I':F _EHYH Cy Ty (@ This is the Bessel differential equation and therefae(p)

can be expressed as a linear combination of Bessel functions,
Here, thef’s are suitable expansion functions. Teigs are  Jamiag(kp) and Y, a4 (kp). Since we required that the
the expansion coefficients, which must be determined frontongitudinal part represent a propagating wave, we write the
the boundary conditions, by the procedure described in theadial solution in terms of Hankel functions,

Appendix. The cutoff numben, has to be chosen in a

proper way to achieve optimal numerical accuracy within a U;f(p)=H;T/M)_(kp)=Jaﬂ./A9i(kp)iiYm,/Agi(kp), (7)
reasonable computation time. We useg=90 for all com- '

putations presented here. which approach exponential functions at infinity:
For the functiond ,,, several choices are possible in prin-

ciple. For our geometry, it proved to be numerically most kp—oo

efficient to use solutions of the Helmholtz equatip(V? Hfm,Mi(kp) — \/ exp[ i p——(ZE-f-l

+k2)fy=0, without boundary conditiodswhich can be
separated into polar coordinatep, ¢). These functions take
the form

®

O ———=
(kp)3’2

f(p, @) =31y (kp)e", () _ _
Here, we used the notatldﬂj (H,) for the Hankel func-
whereJ,| denotes the Bessel function of ordes. tions of the first(second kind, of ordery.
The normalization constantN|, is calculated from the
B. Lead states condition that each channel carry unit current, i.e., we re-

. : L guire that
For waveguide scattering problems, it is usual to expres

the properties of the system in terms of &matrix, which 0,+A6,/2
contains reflection and transmission amplitudes from incom- ‘ f 9
ing channels to outgoing channels in the leads. Before we

can properly define th8& matrix for our system, we first have

to specify what we mean by incoming and outgoing channel

pdej,”

—A0;/2

yere the Iong|tud|nal component of the probability current

(also called “modes} in this particular case. density,j'“=j,"e,+], €, is given by
Following the conventions from scattering problems with i [ oyt * PWES
straight leads, we require that an incomitagitgoing mode e X_) Xi:_Xit*(X_”_ (10)
x~ (x") is a solution of Poo2mll dp ap
(V2+Kk?)x*=0, (4)  This yields
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m Here, ¥z, is the state in lead ¥ 4, is the state in lead 2,
IN|= TAD (1) andr,g (t,p) is the probability amplitude that the electron
I

enters in channgd and is reflectedtransmittedl into channel
With these results, the expression for the incoming/a' Likewise, if the electron is incident in lead 2 and channel

outgoing channela=1,2, ..., corresponding to thexth A, the wave function in the leads takes the form

standing wave in the transverse direction, becomes
‘I',/_;,zz)(g*‘Z r;ﬁXiJr and‘PBfE t;zﬁ:)(i+ . (A7
( A0i> “ “
aT| @— Gi + — . . . .
. N [fmm 2 H* K Here W4, is the state in lead 2) 4, is the state in lead 1,
Xa _W A b sin A0, mT’“i( p)- andr;B andt;B are the reflection and transmission probabil-
(12) ity amplitudes, respectively. Note that the soluti¥nof Eq.
(1) is not unique, but we obtain different solutiols; de-
To fix the overall phase factolN/|N|, in Eq. (12, we  pending on which channg? is assumed to carry the incom-
require that the solution be real at the interface between thigig part of the matter wave.
leads and the cavity. Then, if a mode is completely reflected The S matrix connects the amplitudes of the incoming
back at this position, the corresponding reflection coefficienpropagating electrons to the amplitudes of the outgoing
will be 1. This can be achieved by multiplying the modespropagating electrons and it is therefore constructed out of
with a complex phase factor. =R, the Hankel functions all the reflection and transmission amplitudes. Thus, $She

(the only complex factor iry') can be written as matrix can be written
H;XIW/AOi(kR):|H§77'/A0i(kR)| RT
s=1 r'l (18)
. YaTr/ABi(kR)
Xexp, =iarctan —————| . (13 _ .
Jaming (KR) whereR andR’ are square matrices composed of reflection

amplitudesy .z andr;ﬁ, andT andT' are square matrices
Because we want the probability amplitude at this position tacomposed of transmission amplitudégg andt, ;. The re-

be real, we will use the complex phase factor flection and transmission amplitudes must be computed nu-
merically (see Appendix
N . Yaﬂ'/ABi(kR)
N~ &Xp) Flarctan ———— -1 . (14 lll. CLOSED CUT-CIRCLE BILLIARD
| | ‘]aﬂ'/AHi(kR)

One aspect of the scattering properties of the waveguide
Then, the final form of the incoming and outgoing propa-that we wish to explore is how close a correspondence there
gating modes in channel becomes is between the Fano scattering resonances and the eigenstates
of a closed version of the waveguide cavity. In this section,
‘ mm Y aming (KR) we therefore describe some features of these eigenstates, as
Xa (p@)= \/m exp) +i arcta T kR the cut size on the cut-circle billiard is changed.
: amlA0 The Schrdinger equatiofEg. (1)] for a quantum particle
A6 in a closed full-circle billiard is separable, with one part de-
omr( o— 0i+7) scribing the radial and the other part the azimqthal motion.
X sin X HE o (Kp). The (discrete energy spectrum can be Iabelec_i with two good
0, ' guantum numbers. One of them=1,2, ..., isassociated
(15) with radial motion, and the othelr;=0,+1,%+2, ... ,with the
angular motion. The eigenfunctions are
As we now have derived the expression for incoming and _ il
outgoing channels, we are finally in the position to define the Wy n=Jp(Kjnp)e"?, (19
S matrix of our system. The matter wa¥e inside the leads whereJ;, is the Bessel function of order| and ( R) is
i7 i . '0€Sts nth zero(i.e., Jji| vanishes ap=R). The corresponding
X, (p,¢) and x."(p,), respectively. Then the expansion eigenenergie€ , are then calculated Vi& =7%2k?/(2m).
coeﬁicient_s Qescribe the probability amplitud_es of .reflectionThe energy eigehstates of the circle billiard with angular mo-
or transmission _of the matter wave from. an incoming Chan‘mentum|l|>1, corresponding to clockwise or counter clock-
nel to the outgoing channels. More precisely, if the electronyise rotation of the matter wave, produce twofold degenerate
is incident in lead 1 and channgl the wave function in the eigenenergies. Only the eigenenergies WitD are nonde-
leads takes the form generate.
If we apply a cut to the closed system, the classical dy-
_ 1 1+ _ 2+ namics of the particle exhibits hard chd®, as long asw
Voa=xs +§ fapXa aNdWg2 % tepXa - (16 =<180°. Looking at the quantum properties, we observe a
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FIG. 2. Five energy eigenvalues of the closed cut billiard as a
function of dimensionless energy and cut sizew. From left to FIG. 3. Three energy eigenstates corresponding to energy eigen-
right we label them as 1a, 1b, 2a, 2b, and 3a. &er0°, the states  Values 2a, 2b, and 3a in Fig. 2. The cut is located-a270°. The
1a and 1b are degenerate with quantum numbersSfi=2), the  tOP row hasw=50° and consists ofa) State 2a fore=50.2, (b)
states 2a and 2b are degenerate with@n=1), and 3a is one of State 2b fore=50.5, and(c) State 3a fore="51.9. The middle row
a degenerate pair witH € 1,n=3). hasw=61.4° and consists dfl) State 2a fore=51.0, (e) State 2b
for e=51.3, and(f) State 3a fore=52.4. The bottom row ha&
splitting of the degenerate eigenenergies as the cut is in- 00, and consists ofg) State 2b fore=51.5 and(h) State 2a for
serted. The absence of degenerate eigenvalaes! repul- €=51.7. Note that, from left to right, we show states with increas-
sion) is a well-known quantum feature of classically chaotic'9 8n€rgy- This means that 2a and 2b switch position from the
middle to the bottom row, as their eigenenergies cross.
systemg(see, e.g., Ref.10]).
Examining the quantum properties of the cut-circle bil-
liard in more detail, we show how five of the energy levels ofthe Hamiltonian of the cut-circle is not completely “ge-
the cut billiard behave as the cut size is varied fram neric.” Even if the cut is inserted, the system retains parity
=50° to w=70° in Fig. 2. The states shown are continua-symmetry with respect to an axis perpendicular to the cut,
tions of the circle cavity degenerate pails=@Bn=2), (I ie.,
=6,n=1), and one of the pair| E1,n=3).
Here and in later numerical computations, we are using

dimensionless variables. The dimensionless enetgis PV (p,0)=V(p,{—¢)=Y(p,o), (21)
given by
mR2 (kR)2 P whereP, is the parity operator for a symmetry axis through
€= —5 52 5 o (200 the center of the cavity, at angle(i.e., the angle at which

the center of the cut is placedBecause of parity symmetry,
we have two different symmetry classes, namely the classes

wherex=kR s a dimensionless wave vector. To get an ideaformed by even and odd states. Since parity is a discrete
of how this translates to the physical dimensions of our syssymmetry, states of one class cannot interact with states of
tem, consider an electron density of~4x10'"cm™?,  the other, thus both classes are completely independent of
which is a typical value measured for a two-dimensionaleach other. Therefore, crossings between states of different
electron gas in a GaAs/fGay /As heterostructurfll]. The  parity may occur. Onlywithin each parity class, i.e., among
corresponding Fermi wave vector i%;=y27n~1.6 states with the same parity, crossings remain impossible.
x 108 m~1, the Fermi energ{E= w#2n/m~0.014 eV (for In Fig. 3, we show energy eigenstates corresponding to
an effective electron mass in GaAs wf=0.061,). This  the eigenvalues 2a, 2b, and 3a in Fig. 2, for three different
yields for e=100, which is the maximum energy we used in cut sizes taken before the avoided crossing, between the
the computationsR~90 nm. avoided and actual crossings, and after the actual crossing. It

In Fig. 2, we observe &listan} avoided crossing, which can be seen that 2a has even parity, and 2b and 3a both have
occurs between states 2b and 3a in the inteaval53° to  odd parities. This explains why 2a and 2b can undergo the
®w=63°. We also see an actual crossing in this plot. Thiscrossing, whereas a crossing between 2b and 3a is avoided.
occurs between the states labeled 2a and 2b at about We also see that state 2a, which does not participate in the
=65°. avoided crossing and undergoes the crossing with 2b, re-

However, as discussed in R¢lL2], separate eigenvalues mains unchanged. However, states 2b and 3a, which do un-
of a generic Hamiltonian can in general only be brought todergo an avoided crossing, become mixed and lose their
coincide if at least three parameters are varied. Thus, at firgiriginal identities. The mutual parity of states 2b and 3a
sight, we would expect another level repulsion instead of thallows them to couple, whereas this is impossible for states
actual crossing, since we only vaay. Yet we ignored that 2a and 2b with differing parities.
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IV. WAVEGUIDE WITH A CIRCLE CAVITY

~
=
R

If we attach leads to the circle billiard, we have a matter
waveguide and the eigenstates of the billiard become un
stable and may decay. These unstable states strongly affe:
the scattering dynamics of the waveguide. They appear a
resonances in the transmission probabilities through the
waveguide,

{es S v S v (T o0 |

20

15
TBZZ |tagl®, (22 10

90

for incoming modeg in lead 1, wherex runs over the out- 10 20 30 40 50 60 70 80 100

going modes in lead 2. We can examine the individlig
or consider their sum over all possible incoming modes inf
lead 1, which is proportional to the Landauertker con-
ductancd13],

FIG. 4. (a) Transmission probability antb) delay time spectra
or lead openingsA #;=20°, A#,=20° and lead positiong,
=0° and#,=180°. Eigenvalues of the closed circle are marked by
filled (degenerate eigenvalyeand open(nondegenerate eigenval-
ues circles.
G=— > T,. (23)

h 4 # A. Symmetric placement of leads

In Fig. 4, we show numerical data obtained for an electron
waveguide with a circle cavity with symmetrically placed
leads, one at;=0° and the other a#,=180°. Both leads

As shown in Ref[5], there is an energy range where, for
conical leads, modg has nonzero transmission, whereas for

straight leads with the same opening angles it would still besubtend the same angled, = A 6,=20°. The dimensionless
evanescent. This occurs for energies too small forghie energye is varied in stepé of 025 '

transverse standing wave to fit into the lead opening at the g P )
Jncion 1 the auty.such i the wave nas 1 “unnel” g, ' "S0STISSn probabily n loid shous e auer
into the cavity. The condition for this tunnelirigee Ref[5]) mode (3=1) starts transmittingi.e., becomes significantly
is k< Ba/d;, if di=2Rsin(A6/2) is the width of the lead larger than zerpat aboute~20. The second mode starts
openlrjg(for opening angle ¢). Thus, tunneling occurs for transmitting too closely below 100 to be visible in the plot.
energies such that The transmission for higher modes is zero everywhere in the
5 5s - energy interval below 100, and therefore these modes were
~ PBmRT O pm (24  notincluded in the computations or the plot.
2di2 8 sirf(A ei/2)’ The threshold energieTsﬁ, for which the modes would
start propagating in the case of straight leads with=20°,
wheree is the dimensionless energy defined in Ezp). are'€;=40.91, ande,=163.66 for the first two channels.
In addition to the transmission probabilities and This means that for the conical leads, we observe tunneling
Landauer-Bttiker conductance, it is useful to look at the of the first mode in the energy range between20 and 40.

Wigner delay times, Examining the correspondence between eigenenergies of
the closed circlgindicated by filled circles for degenerate
w_, 900 levels and open circles for nondegenerate lgvaisl reso-
n :hﬁ ' (25 nances of the open system, one finds that there is obviously a

strong association. In energy intervals without eigenenergies,

where 6, are the phases of th&matrix eigenvaluess, the transmission changes smoothly, whereas there are sharp
=¢e'n. The Wigner delay times are a measure of the timechanges close to eigenenergies. In the tunneling regime, we
delay of the electron due to the presence of the cavity. In thé€e peaks close to the eigenenergies. The peaks tend to be

f0||owing p|0tS, we will use dimensionless de|ay times Sllghtly shifted to the left. Above the tunneling threShO|d, we
also observe valleys, e.g., a&=67.5,74.7. In this regime,

most peaks and valleys in the vicinity of an eigenenergy are

=—= (26) too close together to tell which is associated with the
Je  miR? eigenenergy. Since the lead openings themselves alter the

geometry of the system, we cannot expect the resonances to

(For R=100 nm, 7,~20, andm} =0.067T,, the Wigner be found exactly at the same positions as the eigenenergies.

delay time is of the order of 0.1 nd=rom Ref[14] it is clear In Fig. 4(b), we plot the dimensionless delay timeg.

that peaks in the Wigner delay time correspond to resonancdde energy derivatives at each point are approximated by

and poles of the scattering matrix in the complex energycarrying out two computations for each point, with energy

plane. Therefore, we can use peaks in the delay time spectspacingAe=10"°. Since the transmission probabilitigs;

to indicate the resonances of our system. vanish for=3, we only have to consider the two channels

96, ﬁrxv
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(@ The difference between this case and the previous case
with symmetric lead placement{=180°) is that, for sym-

metric placement, we had two discrete symmetries, namely
invariance under the parity transformatioRg. and Pgge
[where the parity operators are defined as in(d)]. When
€ the leads are placed asymmetrically, the symmetry under
(b) Tn Pg-, with respect to the axis bisecting both leads, is de-
stroyed, and we are only left with one parity symmetry under
Pe2s0. The breaking of one parity symmetry seems to be the
reason for the splitting of resonances seen in F{g).5

/_\A_A%}L[L c C. Numerical accuracy

40 50 60 70 80 90 100

L A e 0 o O o |

10 20 30

o N _ To get an estimate of the numerical error, the sum of the
FIG. 5. (&) Transmission probability antb) delay time spectra  absolute values squared of all reflection and transmission
for lead openingsA#,=20°, A#,=20° and lead position®);  amplitudes was calculated. Due to the unitarity of 8¥xma-

=0° andf,=125°. Eigenvalues of the closed circle are marked bytrix, this value has to be the dimension of tBeatrix, which
filled (degenerate eigenvalyeand open(nondegenerate eigenval- is 4 here. The relative error,

ues circles.
2

1
1-— Fagl?+ tagl 2+ 0L g2+t 4P, (2
B=1 andB=2. Thus, theS matrix is a 4<4 matrix and we 4 a,BE:l (P agl™ltapl "+ Iragl*+tesl, 27

get four eigenphases and four delay time curves.

Here, unlike for the transmission probabilities, we only was usually smaller than 0.2% for the individual data points.
need to look forpeaksin the Wigner delay times at the The errors of the absolute values of tBenatrix eigenvalues
resonance energies, in the tunneling as well as in the norm&which should be Lwere of the same order of magnitude.
regime. The first two time delays display their first peakFor the delay times, there is no easy way to estimate the
around e~ 15, the others at~75. At these energies, the ©€Mor _ o _
corresponding transmission probabilities are still too close to "€ mMost crucial factor determining numerical accuracy
zero to produce a visible peak in Fig(@h This shows that Was found to be the numbemz of parametergexpansion

the delay times are a more sensitive indicator of resonancé@efCients I .t.5.b,5) used to approximate the total
than theT;'s. wave function of our system[see Eqs(16), (A6), and

We see that the degenerate eigenenergies of the circ 13)]. An estimate for a suitable choice of this number can

billiard do not produce double resonances when leads ang’ found by comparing the Fermi wavelengiiy=2m/ks,

) o - N to a typical length scale of the system, e.g., the length of the
a_ttached at the spem_al ang_le_§—0_ and 02._ 180°. Every boundary~2#xR (for zero or small cut size If we assume
eigenenergy of the circle billiard is associated only with a

. . ) . “that the total wave function of our system varies rather
single delay time peak. Although placing leads to the C'rCIesmootth on a length scale af;, it seems plausible that a

cavity destroys its radial symmetry, the breaking of the de-.gm 41" number of parameters, say about 10, should be suf-

generacy is not observed in this case. ficient to approximatél’ on an interval of lengtfa; . There-

fore, we expect that such a “small” multiple at=k;R

=+/2e="the number of \; intervals needed to cover the
In Fig. 5, we show the same waveguide, but with asym-cavity boundary” should give a reasonable order of magni-

metric placement of leads instead of the symmetric placetude estimate for @, .

ment we had in Fig. 4. Lead 1 is placed@t=0° and lead In Fig. 6, we compare the transmission spegkig. 6a)]

2 at9,=125°. and the spectra of the time delay sufgy. 6(b)] for differ-
Now we not only see again the close correspondence bent values ofn,. As deviations are expected to be most
tween delay time peaks and eigenenergies of the circle, bygronounced for large cut size, the calculations shown were
we also observe double peaks at most of the degenerate bilfone exemplarily for the symmetric cut-circle waveguide to

liard eigenenergies, most evidently et24.6, 28.8, 35.4, be examined in Sec. V A, ab=80°.

38.5, and 49.4. At higher energies, the observation of double We find noticeable deviations far,=30 and, to a small
peaks is more difficult because the second mode starts trangxtent, also fom,=60. The values fon,=90 practically
mitting. (Some of its first peaks are too small to be seen incoincide with those fon,=120. Therefore, in view of com-
the plot, but can be found by looking at the data fiany  putation time, we used,= 90 in all computations presented
of the double peaks show a small energy spacing: One peaR this paper.

is slightly shifted to smaller energies, the other one to higher
energies. Here, the degeneracy is obviously broken by the
addition of the leads. For the nondegenerate eigenenergies on
the other hand, no splitting can be observed. Especially at We now consider a waveguide with a cut-circle cavity.
e=37.4, this becomes very obvious. Figure 7 shows the sum of the partial delay times,

B. Asymmetric placement of leads

V. WAVEGUIDE WITH A CUT-CIRCLE CAVITY
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FIG. 7. (a) Sum of the partial Wigner delay times afig) con-
: ‘ . ‘ . , ‘ ductance for lead opening §=20° and varying cut sizes. The
47.5 48 48.5 49 43.5 50 50.5 51 51.5 leads are centered &§=0° and#,=166°, and the cut is centered
at (=225°.

FIG. 6. (a) Transmission spectra arfll) spectra of the sum of
partial delay time_s in the dimensionless energy interval 45  f|I-circle cavity), the insertion of the cut already leaves us
=525, for cut sizew<80°. The lead openings ak6,=Af,  yyith only one parity symmetryunderP,). As a result, the
:16°-° Lead and cut positions aré,=0°, 6,=120°, and{  «gymmetric” cut-circle waveguide is analogous to tasym-
=240°. The results for different values of are compared. metric full-circle waveguide rather than to the symmetric
full-circle waveguide. Finally, in the “asymmetric” cut-
circle waveguide, there are no geometric symmetries present
§t all. Since this could not be achieved by merely placing
two leads to a circle, this case has no parallel in Sec. IV.

=3p_, 7, and the Landauer-Biiker conductancé. For this

computation, leads and cut are placed asymmetrically. Th
leads are centered & =0° and #,=166°, and the cut at
{=225°. The cut sizev varies from 0°(circle) to 80°, with
step size 5°. The dimensionless eneegy varied in steps of _
0.25. A. Symmetric placement of leads and cut

In the delay time spectrunfupper ploj, we observe Let us examine the Wigner delay times for the energy
chains of separated double peaks, corresponding to th@ange where we found an actual crossing and an avoided
split-up branches of degenerate circle eigenenergies. If werossing in Fig. 2 for the closed cut-circle billiard. We first
compare the positions of maxima in the Wigner delay time taconsider a system in which the leads are placed;at0°
the positions of eigenenergies of the closed system, we findand 9,=120°, symmetrically with respect to the cut at
good agreement betweefopen system resonances and =240°. The lead openings afef; =A 6,=16°. The plot of
(closed cavity eigenenergies. the sumr of the Wigner delay times is shown in Fig. 8.

The conductancelower ploy shows similar features.  We observe five delay time peaks, which are Fano reso-
However, the first visible chains of resonances occur at signances resulting from the closed cut billiard eigenstates 1a,
nificantly higher energies than in the delay time plot. Forib, 2a, 2b, and 3a shown in Fig. 2. Starting from the left, we
energies between 20 and 40, both plots show basically theibel these delay time peaks in the same manner. For cut size
same structures. Above the first tunneling threshold,at  w=20°, we designate the delay time peaks, going from left
=40.91, the conductance reflects the onset of “normal’to right, as 1b, 2a, 2b, 3a, and 3b. 1a is the resonance chain
(compared to tunnelingtransmission of the first mode. In in the upper left corner. The first two delay time peaks, la
this energy regime, we cannot tell any more whether resoand 1b, are Fano resonances resulting from the circle eigen-
nances are indicated by peaks or dips in the conductance. state with (=3,n=2), the following two from (=6,n=1),

We will now compare the properties of the cut-circle cav-and the last two, 3a and 3b, frorh=1,n=3).
ity waveguide for symmetric and asymmetric lead place- Again, we observe an avoided crossing between 2b and
ments. Note, however, that although this may seem to b&a, and the two delay time peaks 2a and 2b actually cross.
analogous to the analysis from the previous sectfonthe  Like for the closed cavity, the crossing is possible due to the
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ﬁ state 1b ‘bi state 2a ﬁ state 2b ‘di state 3a
'ei state 1b ;E! state 2a (‘ii state 2b (‘h! state 3a

e (i) state 1b  (j) state 2a (k) state 2b

80

70 r

60

@ 50 |

40 r

30 r

20

FIG. 8. Spectrum of the sum of partial delay times for the en-
ergy interval 47.5 e<52.5 and cut size interval 28°»=<80°. The
lead openings ard #;=A6,=16°. Lead and cut positions arg
=0°, 0,=120°, and{=240°.

) . FIG. 10. Electron probability distribution in the waveguide cav-
parity symmetry of the system, which has been preserved by, at the resonance energy for Fano resonances shown in Fig. 9.
adding the leads symmetrically with respect to the cut. SinCgpe |ead openings ark6, = A ¢,=16°. Lead and cut positions are
2a and 2b have different parities, these eigenvalue chains age—0°, 9,=166°, and;=225°. The top row has=50° and con-
allowed to cross. sists of(a) state 1b fore=47.8,(b) state 2a fore=49.2,(c) state 2b

The symmetric placement of leads has not broken any,r (=502, and(d) state 3a fore=51.1. The middle row has
additional symmetries. Only the energies and cut sizes at ggo angd consists ofe) state 1b fore=48.5, (f) state 2a fore
which the avoided crossing and actual crossing take place ares5 7, (g) state 2b fore=51.3, and(h) state 3a fore=52.3. The
slightly shifted from the case of the closed cut billiard. bottom row haso=78° and consists df) state 1b fore=49.2, (j)

state 2a fore=50.7, (k) state 2b fore=52.2.
B. Asymmetric placement of leads and cut

In Fig. 9 we show the same Fano resonances as in Fig. #r the asymmetric system. A three-way avoided crossing
but for asymmetric placement of leads. Now we place théas mixed the resonance states, and has destroyed the iden-
leads at§; =0° and#,=166° and the cut af=225°. tity they had for smaller cut size. The upper row displays the

The crossing of resonances 2a and 2b, which occurred fdpur states before the avoided crossing, which still reflect the
the symmetric leads and for the closed cut-circle billiard, hagiuantum numbers of the associated circle states very well.
now become an avoided crossirgn fact we now have a For the middle row, the character of states 2a, 2b, and 3a has
sequence of two closely spaced avoided crossings, similar t3een changed. Only the resonance state 1b, which never
the case studied in Ref10].) Here, the parity symmetry of comes really close to the crossing region, has preserved its
the closed system is destroyed by placing the leads asyngharacteristic structuréwo rings with six peaks eagfyuite
metrically. Therefore, in the asymmetric open system, we navell. In the bottom row, after the second avoided crossing,
longer have two separate classes of stéesnely states of 2a and 2b have mixed even further.
even and odd parifyand the crossing, which was possible in
the closed system and in the symmetric open system, is ACKNOWLEDGMENTS

avoided here. The authors wish to thank the Welch Foundati@rant

No. F-1053, NSF (Grant No. INT-960297) and DOE
(Contract No. DE-FG03-94ER144p%or partial support of
We now look at the distribution of electron probability in this work. We also thank the University of Texas at Austin
the cavity at the resonance energies. This is shown in Fig. 1Bigh Performance Computing Center for use of their com-
puter facilities. K.F. wishes to thank Deutscher Akademe-
scher Austauschdienst for partial support of this work.

C. Cavity wave functions

80

70 i j
= VI. CONCLUSION

In this paper, we investigated a waveguide with a cut-

\ circle cavity by calculating conductances and Wigner delay

2by | !3a times. We attached conic leads to the cavity in two ways,

= 51~’ = symmetrically and asymmetrically. We observed two kinds
of avoided crossings when the leads were placed asymmetri-

cally, breaking the parity symmetry of the closed cavity. One
FIG. 9. Spectrum of the sum of partial delay times for the en-avoided crossing was due to the chaos of the closed cavity,
ergy interval 47.5: e<52.5 and cut size interval 52»<80°. The  i.€., due to level repulsions between states in the same sym-

lead openings ard §;=A6,=16°. Lead and cut positions aryg ~ metry class, which are known to occur for fully chaotic sys-
=0°, 6,=166°, and{=225°. tems. The other avoided crossing was due to the breaking of

60 r

50

€
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the discrete symmetrythe parity in our caseby placing
leads asymmetricallysee Fig. 9.

There is now great interest in exploring the effects of
underlying chaos on the dynamics of open quantum systems.
However, open quantum systems must make contact with the
outside world. This contact itself may induce some of the
signatures of chaos. This fact has also been studied exten-
sively by Jung and Seligmdni5] for classical scattering sys-
tems. The avoided crossing between 2a and 2b, shown in
Fig. 9, provides another example of this effect.

APPENDIX: NUMERICAL METHOD

1. Basic concept

In order to obtain an explicit expression for tBematrix,
we need to find the stationary solutiods of Eq. (1). This
can only be done numerically for our system. For that pur- FIG. 11. Integration contour for the cut-circle waveguide, con-
pose, we use the boundary integral method described in Refisting ofC,,C,,Pg,P,P,, andPs3.

[16]. Below, we will give an outline of this method adapted

to our particular problem. nience, we used the same functions as for the expansion of
The boundary integral method is based on the use oW inside the cavity, namely>,=f, with the f,’s given by
Green’s theorem, which, for two functiohandg, states that Eg. (3), wherey=—n,+1,... n, (i.e., Ngy=2nN,). For

n,, we also used the same value as in Sec. Ih4s90,

a9 of which allows us to determine,,,= 180 expansion coeffi-

ff dl(f—— —g) f dA'(fV2g—gV?f), (A1) cients.
r an A

if ' is a closed contour confining an ardal is the longitu- 2.S matrix
dinal coordinate along’, andn is the normal coordinate. For In order to compute th& matrix, we split upl’ into parts
the boundary integral method, we choose for the functions C,,C, across the lead openingB; ,P,,P5 along the circu-
and g the wave function¥ and a weight functiond that lar walls, andP, along the cufsee Fig. 11

satisfies the Helmholtz equation We first consider a pati: of the integral in Eq(A3), for
which we only integrate over the lead openirgs andC,
V2P =—Kk?P. (A2) instead ofl". Inserting for® thef,’s and for¥" its expansion

into lead channels from E@16) (for an electron incident in
Then, sincel is a solution of the Schrbinger equatiofEq.  channelg in lead 1), we obtain
(1)], i.e., ¥ also satisfie§ ¥ = —k?¥, the right-hand side
of Eq. (Al) is identically zero. Therefore, we get f
Cy

__f
jl"

&n

as the basic equation of this numerical approdblote that
the difference betweeW and® is that there are no bound-
ary conditions for®, whereasV' has to satisfy the boundary P N 1y 1+
conditions imposed by the geometry of the waveguide. (257)y= (2 )t 2 Tapl(2")ya (2ol

For our problem, we choodeé to follow the walls of the
cavity. For the places where the leads comd'inis taken to 24 24
be the continuation of the circular wall segments in order to +§a: tapl(Z0 ) ya=(Z17) yals (A4)
construct a closed contour. Then, E43) allows us to ob-
tain the S matrix and the probability distribution inside the where we introduced the abbreviations
cavity for any incoming particle energy. This is done by
inserting(approximate expansions ofV with, say,n¢ . yYet 3
unknown expansion coefficients. As we neeg equa- (ZF) = f dl Xa f,
tions to solve for these expansion coefficients, we apply Eq. an 7
(A3) with sufficiently many different weight function®,

of
+2 aﬁ (X;é,_ny

o oW
| v —— —cp)=o (A3)

+

of ., ax.
t_Y_ e
f)’ +; taﬁfC2d|<Xa an an fV)

(n 1 ncutoff)
In principle, there are several choices possible for the ) ya= f dl x> (A5)
d,’s, as long as they satisfy EGA2). For numerical conve- ‘7”
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with i=1, 2 denoting lead 1 and 2For an electron incident different circular wall segments. We are free to choose any

in lead 2, the expressions look similar. complete basis, and for the circular wall segments we choose
Along the walls of the cavity, the electron wave function a Fourier basis,

is zero, but it may have a finite slope perpendicular to the

wall. We can expand this slope in terms of a complete or-

thonormal basis along the wall. Therefore, we can write

‘I’B'pizo,

(AB)

% — (i) (1)

with some set of basis functiord in variablel. The index

A
5i+?

0 _\/7 7TV(|_
&= A—ico (A7)

A; '

whered; is the angular position of the center of wall segment
i=1,2,3,A, is its opening angley=0,1, ..., ands;—A;/2

<|<§;+A,;/2. For the cut, we could use the Fourier basis,
too. However, as this results in very long computation times,
a basis of small triangles proved to be more efficient. Thus,

i =0 is used to denote the cut, and 1,2,3 denote the three along the straight wall we use

( | v | i v | |<V+ 1/2
- < .
n,,+1 % ! n,,+1° n,,+1 %
(n,,+1)
v +1 v+1/2 v+1
20 ¢ VT < : (A8)
| n,,+1IO i ny+1|°<|<n,,+1|0
0 0 0
0, otherwise,
\
|
for 0=<I<l,, wherel ;= 2R sin(w/2) is the length of the cut, r
w is its opening angle, and=0,1, ... n,,- Now we can R t o
write down the part of the integral in Eq(A3), for which (Zog =2 =X) =(zL—2)p- (A12)

we only integrate over the wall segmeiftg, . . . ,P5 instead
of I'. Inserting the expansions from E@\6), we get

(')f di £0f = E b0(x),. .

(A9)

with the abbreviation

B

The matrice<Z; , Z,", andX, as well as the column matrix
(z_ —24) g can be computed numerically from E¢45) and
(A10). Note that in order to include both leads=(1,2) in

Zy andZz", the first columns of these matrices correspond
to lead 1, and the columns for lead 2 are simply appended.
(Similarly, X is composed of the different wall parts,

=0, ...,3,also columnwisg.
. . The quantit
(X')WEJ di €D, (A10) quantty
P ;
Now we can combine these results to obtain a matrix t
equation for the unknown expansion coefficients, which can b

easily be solved numerically. With the integrals andlp,
Eq. (A3) becomed -+ 1p=0. Inserting Eqs(A4) and (A9)
yields (after a slight reordering of terms

2 12050 (@ )yl ap T 2 (2 ) ya= (2 yaltag

3
+EOE (=xD,,b0)==1(257) 5= (217 5l
(A11)

or, in compact matrix form

B

is a column matrix containing the unknown transmission and
reflection coefficients for a particle incident in chanyein
lead 1, as well as the coefﬁmeribé,' which describe the
normal derivative of¥" ; on the Walls As this is the quantity
which we want to solve for, we need to invert the matrix
(Zg —Z, —X). Therefore, this matrix has to be square. This
can be achieved by using appropriate cutoff numlmglrs(i
=12) in the lead expansion$Eq. (16)] and n, (i
=0,...,3) in thewall expansion$Eq. (A6)]. Since the ma-

trix consists of 21, rows, these numbers have to satisfy the
relation
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2 3
3 0.+ 2 (n,+1=2n,. (A13) ; Csf (@) =0, (A14)

(Note thatv=0,... n,, therefore we actually sum over
n, +1 terms for the wall partsFor best numerical accuracy, and along the interfac€,; and C, between the leads and

the relations of the cutoff numbers are chosen approximatel§avity
equal to the length relations of the corresponding integration
paths.

3. Cavity probability amplitude Ey Cr6T+(P1 )=V g(p. ), (AL5)

Once the elements of tg@matrix have been obtained by

the method described above, it is an easy task to calculate the . . ) )
probability amplitude for the electron state inside the cavity Where ¥ (in the leads, for incoming modg) is known
We know that the wave function, which, inside the cavity, isfrom the previous section. It is straightforward to solve for
described by Eq(2), is zero along all the walls and that is the c,z’s, e.g., by evaluating the above expressions raj 2
continuous at the interface between the leads and the cavitglifferent points onl’, and inverting the resulting system of

Thus we require that along the walls, linear equations.
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