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Scattering properties of a cut-circle billiard waveguide with two conical leads

Kathrin Fuchss, Suhan Ree, and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 17 May 2000; published 22 December 2000!

We examine a two-dimensional electron waveguide with a cut-circle cavity and conical leads. By consid-
ering Wigner delay times and the Landauer-Bu¨ttiker conductance for this system, we probe the effects of the
closed billiard energy spectrum on scattering properties in the limit of weakly coupled leads. We investigate
how lead placement and cavity shape affect these conductance and time delay spectra of the waveguide.
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I. INTRODUCTION

The scattering properties of ballistic electron waveguid
have been studied by a number of authors, but primarily
the semiclassical regime, where resonances strongly ove
@1,2#. Several experiments@3# have shown that the shape
the waveguide cavity can strongly affect the conductan
depending on whether the shape induces integrable or
otic motion @4#. In this paper, we investigate the scatteri
properties of an electron waveguide whose scattering ca
strongly resembles that of a quantum dot. We investigate
system in a regime where the resonances are well sepa
in energy, and we look at the effect of distortions in sha
and changes of lead placement, which change the symm
of the scattering cavity, on the behavior of the scatter
resonances.

The geometry of the waveguide we consider in this pa
is shown in Fig. 1. The scattering system consists of a ca
with two cone-shaped leads attached, which we will trea
infinitely long. The walls of both the cavity and the leads a
assumed to be infinitely hard~infinite potential! walls. The
cavity has the shape of a circle of radiusR, but with a seg-
ment of the wall, subtended by an anglev, replaced by a flat
segment which we call the cut. The opening angles of
leads areDu1 andDu2. The angular positions of the cente
of the cut and the center of the lead openings are denote
z, u1, andu2, respectively.

The effect of conical leads has already been studied
earlier works~e.g., Ree and Reichl@5#, Perssonet al. @6#, and
Berggren, Ji, and Lundberg@7#!. Compared to straight lead
~which have most commonly been used in publications
waveguides!, conical leads are more similar to the electr
sea which provides the source of electrons in most exp
ments. As shown in Ref.@5#, conical leads allow tunneling
resonances through the waveguide cavity for energy regi
in which conduction is prohibited for straight leads.

A classical particle moving in a closed billiard whos
shape is that of a circle with a cut~the shape of our cavity!
will display a rich range of chaotic behavior as the size of
cut is varied@8#. Quantum signatures of the classical chaos
this billiard have been studied in Ref.@9#. One question we
will be interested in is how well the scattering process c
probe this dynamics of the closed cavity. In the low-ene
regime we will consider, we expect that the waveguide w
exhibit well-separated Fano resonances at energies clo
the energy eigenvalues of the closed billiard.
1063-651X/2000/63~1!/016214~11!/$15.00 63 0162
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Beyond simply allowing us to probe eigenenergies of
closed billiard as scattering resonances, lead placement i
can alter the symmetry properties of the closed billiard. W
will study the effect of symmetries by investigating how th
positions of the leads affect the behavior of the Fano re
nances.

In Sec. II, we will discuss cavity states and the scatter
states that are used to obtain the scatteringS matrix for a
system with conical leads. In Sec. III, quantum properties
the closed circular cavity with a cut will be reviewed. I
Secs. IV and V, we will look at the behavior of conductan
and Wigner delay times for waveguides with full-circle an
cut-circle cavities. Leads will be attached to cavities sy
metrically or asymmetrically. Finally, in Sec. VI, we wil
summarize our results. A short discussion of the numer
method used for our computations is given in the Append

II. SCATTERING WAVE FUNCTION AND S MATRIX

Matter waves inside the waveguide pictured in Fig. 1 a
governed by the Schro¨dinger equation, which, in polar coor
dinates, takes the form

~¹21k2!C~r,w!5S ]2

]r2
1

1

r

]

]r
1

1

r2

]2

]w2

1
2mE

\2 D C~r,w!

50. ~1!

Here,k5A2mE/\2 is the wave vector of the particle wave
m is the particle mass,\ is Planck’s constant, andE is the
energy. The geometry of the system, which determines
scattering properties, is taken into account by the bound
condition that the scattering wave functionC vanish on the
walls.

The solutionC is computed numerically by expanding
into suitable basis functions, and determining the expans
coefficients from the Schro¨dinger equation and its boundar
conditions by the method described in the Appendix. Belo
we discuss the expressions forC in the different regions of
our system. In Sec. II A, we look at the wave function insi
the cavity. The wave function inside the leads is conside
in Sec. II B, where we will also define the scatteringSmatrix
of the waveguide.
©2000 The American Physical Society14-1
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A. Cavity states

In the interior region of the cavity, the solution of Eq.~1!
can be written as

C5 (
g52ng11

ng

cg f g . ~2!

Here, thef g’s are suitable expansion functions. Thecg’s are
the expansion coefficients, which must be determined fr
the boundary conditions, by the procedure described in
Appendix. The cutoff numberng has to be chosen in
proper way to achieve optimal numerical accuracy within
reasonable computation time. We usedng590 for all com-
putations presented here.

For the functionsf g , several choices are possible in pri
ciple. For our geometry, it proved to be numerically mo
efficient to use solutions of the Helmholtz equation@(¹2

1k2) f g50, without boundary conditions# which can be
separated into polar coordinates, (r,w). These functions take
the form

f g~r,w!5Jugu~kr!eigw, ~3!

whereJugu denotes the Bessel function of orderugu.

B. Lead states

For waveguide scattering problems, it is usual to expr
the properties of the system in terms of anS matrix, which
contains reflection and transmission amplitudes from inco
ing channels to outgoing channels in the leads. Before
can properly define theSmatrix for our system, we first hav
to specify what we mean by incoming and outgoing chann
~also called ‘‘modes’’! in this particular case.

Following the conventions from scattering problems w
straight leads, we require that an incoming~outgoing! mode
x2 (x1) is a solution of

~¹21k2!x650, ~4!

FIG. 1. Geometry of the scattering system with cavity radiusR,
lead positions atu1 andu2, lead opening anglesDu1 andDu2, cut
position atz, and cut anglev.
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which is separable into coordinates longitudinal and tra
versal to the lead walls. As a further condition, the transve
part has to be a standing wave vanishing on the walls and
longitudinal part describes a wave propagating towa
~away from! the cavity.

For the conical shape of our leads, the longitudinal a
transversal coordinates are just the polar coordinatesr and
w, respectively. Thus, the separation ansatz with a stand
wave in the transverse direction (a51,2, . . . ) takes the
form

xa
i 65Nua

i 6~r!sinF apS w2u i1
Du i

2 D
Du i

G , ~5!

whereu i locates the angular position of the center of thei th
lead,R<r,`, andu i2Du i /2<w,u i1Du i /2 (i 51, 2 for
leads 1 and 2, respectively!. N is a ~yet unknown! constant
factor.

Inserting this into Eq.~4! leads to an equation for th
radial part of the wave function,

Fr2
]2

]r2
1r

]

]r
2S ap

Du i
D 2

1k2r2Gua
i 6~r!50. ~6!

This is the Bessel differential equation and thereforeua
i 6(r)

can be expressed as a linear combination of Bessel functi
Jap/Du i

(kr) and Yap/Du i
(kr). Since we required that the

longitudinal part represent a propagating wave, we write
radial solution in terms of Hankel functions,

ua
6~r!5Hap/Du i

6 ~kr!5Jap/Du i
~kr!6 iYap/Du i

~kr!, ~7!

which approach exponential functions at infinity:

Hap/Du i

6 ~kr! →
kr→`A 2

pkr
expH 6 i Fkr2

p

4 S 2
ap

Du i
11D G J

1OF 1

~kr!3/2G . ~8!

Here, we used the notationHg
1 (Hg

2) for the Hankel func-
tions of the first~second! kind, of orderg.

The normalization constant,uNu, is calculated from the
condition that each channel carry unit current, i.e., we
quire that

U E
u i2Du i /2

u i1Du i /2

r dw j r
i 6U51. ~9!

Here, the longitudinal component of the probability curre
density,j i 65 j r

i 6er1 j w
i 6ew , is given by

j r
i 65

i\

2m F S ]x i 6

]r D *
x i 62x i 6* S ]x i 6

]r D G . ~10!

This yields
4-2
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SCATTERING PROPERTIES OF A CUT-CIRCLE . . . PHYSICAL REVIEW E 63 016214
uNu5A pm

\Du i
. ~11!

With these results, the expression for the incomin
outgoing channela51,2, . . . , corresponding to theath
standing wave in the transverse direction, becomes

xa
65

N

uNuA
mp

\Du i
sinF apS w2u i1

Du i

2 D
Du i

GHap/Du i

6 ~kr!.

~12!

To fix the overall phase factor,N/uNu, in Eq. ~12!, we
require that the solution be real at the interface between
leads and the cavity. Then, if a mode is completely reflec
back at this position, the corresponding reflection coeffici
will be 1. This can be achieved by multiplying the mod
with a complex phase factor. Atr5R, the Hankel functions
~the only complex factor inxa

i 6) can be written as

Hap/Du i

6 ~kR!5uHap/Du i

6 ~kR!u

3expH 6 i arctanFYap/Du i
~kR!

Jap/Du i
~kR! G J . ~13!

Because we want the probability amplitude at this position
be real, we will use the complex phase factor

N

uNu
5expH 7 i arctanFYap/Du i

~kR!

Jap/Du i
~kR! G J . ~14!

Then, the final form of the incoming and outgoing prop
gating modes in channela becomes

xa
i 6~r,w!5A mp

\Du i
expH 7 i arctanFYap/Du i

~kR!

Jap/Du i
~kR! G J

3sinF apS w2u i1
Du i

2 D
Du i

GHap/Du i

6 ~kr!.

~15!

As we now have derived the expression for incoming a
outgoing channels, we are finally in the position to define
S matrix of our system. The matter waveC inside the leads
is expanded in terms of the incoming and outgoing mod
xa

i 2(r,w) and xa
i 1(r,w), respectively. Then the expansio

coefficients describe the probability amplitudes of reflect
or transmission of the matter wave from an incoming ch
nel to the outgoing channels. More precisely, if the elect
is incident in lead 1 and channelb, the wave function in the
leads takes the form

Cb,15xb
121(

a
r abxa

11 andCb,25(
a

tabxa
21 . ~16!
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Here,Cb,1 is the state in lead 1,Cb,2 is the state in lead 2
and r ab (tab) is the probability amplitude that the electro
enters in channelb and is reflected~transmitted! into channel
a. Likewise, if the electron is incident in lead 2 and chann
b, the wave function in the leads takes the form

Cb,25xb
221(

a
r ab8 xa

21 andCb,15(
a

tab8 xa
11 . ~17!

HereCb,2 is the state in lead 2,Cb,1 is the state in lead 1
andr ab8 andtab8 are the reflection and transmission probab
ity amplitudes, respectively. Note that the solutionC of Eq.
~1! is not unique, but we obtain different solutionsCb de-
pending on which channelb is assumed to carry the incom
ing part of the matter wave.

The S matrix connects the amplitudes of the incomin
propagating electrons to the amplitudes of the outgo
propagating electrons and it is therefore constructed ou
all the reflection and transmission amplitudes. Thus, thS
matrix can be written

S5S R T8

T R8D , ~18!

whereR andR8 are square matrices composed of reflect
amplitudes,r ab and r ab8 , andT andT8 are square matrice
composed of transmission amplitudes,tab and tab8 . The re-
flection and transmission amplitudes must be computed
merically ~see Appendix!.

III. CLOSED CUT-CIRCLE BILLIARD

One aspect of the scattering properties of the wavegu
that we wish to explore is how close a correspondence th
is between the Fano scattering resonances and the eigen
of a closed version of the waveguide cavity. In this secti
we therefore describe some features of these eigenstate
the cut size on the cut-circle billiard is changed.

The Schro¨dinger equation@Eq. ~1!# for a quantum particle
in a closed full-circle billiard is separable, with one part d
scribing the radial and the other part the azimuthal moti
The~discrete! energy spectrum can be labeled with two go
quantum numbers. One of them,n51,2, . . . , isassociated
with radial motion, and the other,l 50,61,62, . . . ,with the
angular motion. The eigenfunctions are

C l ,n5Ju l u~ku l u,nr!eil w, ~19!

whereJu l u is the Bessel function of orderu l u and (ku l u,nR) is
its nth zero~i.e., Ju l u vanishes atr5R). The corresponding
eigenenergiesEu l u,n are then calculated viaE5\2k2/(2m).
The energy eigenstates of the circle billiard with angular m
mentumu l u>1, corresponding to clockwise or counter cloc
wise rotation of the matter wave, produce twofold degener
eigenenergies. Only the eigenenergies withl 50 are nonde-
generate.

If we apply a cut to the closed system, the classical
namics of the particle exhibits hard chaos@8#, as long asv
<180°. Looking at the quantum properties, we observ
4-3
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KATHRIN FUCHSS, SUHAN REE, AND L. E. REICHL PHYSICAL REVIEW E63 016214
splitting of the degenerate eigenenergies as the cut is
serted. The absence of degenerate eigenvalues~level repul-
sion! is a well-known quantum feature of classically chao
systems~see, e.g., Ref.@10#!.

Examining the quantum properties of the cut-circle b
liard in more detail, we show how five of the energy levels
the cut billiard behave as the cut size is varied fromv
550° to v570° in Fig. 2. The states shown are continu
tions of the circle cavity degenerate pairs (l 53,n52), (l
56,n51), and one of the pair, (l 51,n53).

Here and in later numerical computations, we are us
dimensionless variables. The dimensionless energye is
given by

e5
mR2

\2
E5

~kR!2

2
5

k2

2
, ~20!

wherek5kR is a dimensionless wave vector. To get an id
of how this translates to the physical dimensions of our s
tem, consider an electron density ofn'431011 cm22,
which is a typical value measured for a two-dimensio
electron gas in a GaAs/Al0.3Ga0.7As heterostructure@11#. The
corresponding Fermi wave vector iskf5A2pn'1.6
3108 m21, the Fermi energyEf5p\2n/m'0.014 eV~for
an effective electron mass in GaAs ofm50.067me). This
yields fore5100, which is the maximum energy we used
the computations,R'90 nm.

In Fig. 2, we observe a~distant! avoided crossing, which
occurs between states 2b and 3a in the intervalv553° to
v563°. We also see an actual crossing in this plot. T
occurs between the states labeled 2a and 2b at abov
565°.

However, as discussed in Ref.@12#, separate eigenvalue
of a generic Hamiltonian can in general only be brought
coincide if at least three parameters are varied. Thus, at
sight, we would expect another level repulsion instead of
actual crossing, since we only varyv. Yet we ignored that

FIG. 2. Five energy eigenvalues of the closed cut billiard a
function of dimensionless energye and cut sizev. From left to
right we label them as 1a, 1b, 2a, 2b, and 3a. Forv50°, the states
1a and 1b are degenerate with quantum numbers (l 53,n52), the
states 2a and 2b are degenerate with (l 56,n51), and 3a is one of
a degenerate pair with (l 51,n53).
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the Hamiltonian of the cut-circle is not completely ‘‘ge
neric.’’ Even if the cut is inserted, the system retains par
symmetry with respect to an axis perpendicular to the c
i.e.,

PzC~r,w![C~r,z2w!5C~r,w!, ~21!

wherePz is the parity operator for a symmetry axis throug
the center of the cavity, at anglez ~i.e., the angle at which
the center of the cut is placed!. Because of parity symmetry
we have two different symmetry classes, namely the clas
formed by even and odd states. Since parity is a disc
symmetry, states of one class cannot interact with state
the other, thus both classes are completely independen
each other. Therefore, crossings between states of diffe
parity may occur. Onlywithin each parity class, i.e., amon
states with the same parity, crossings remain impossible

In Fig. 3, we show energy eigenstates corresponding
the eigenvalues 2a, 2b, and 3a in Fig. 2, for three differ
cut sizes taken before the avoided crossing, between
avoided and actual crossings, and after the actual crossin
can be seen that 2a has even parity, and 2b and 3a both
odd parities. This explains why 2a and 2b can undergo
crossing, whereas a crossing between 2b and 3a is avoi

We also see that state 2a, which does not participate in
avoided crossing and undergoes the crossing with 2b,
mains unchanged. However, states 2b and 3a, which do
dergo an avoided crossing, become mixed and lose t
original identities. The mutual parity of states 2b and
allows them to couple, whereas this is impossible for sta
2a and 2b with differing parities.

a
FIG. 3. Three energy eigenstates corresponding to energy ei

values 2a, 2b, and 3a in Fig. 2. The cut is located atz5270°. The
top row hasv550° and consists of~a! State 2a fore550.2, ~b!
State 2b fore550.5, and~c! State 3a fore551.9. The middle row
hasv561.4° and consists of~d! State 2a fore551.0,~e! State 2b
for e551.3, and~f! State 3a fore552.4. The bottom row hasv
568° and consists of~g! State 2b fore551.5 and~h! State 2a for
e551.7. Note that, from left to right, we show states with increa
ing energy. This means that 2a and 2b switch position from
middle to the bottom row, as their eigenenergies cross.
4-4
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SCATTERING PROPERTIES OF A CUT-CIRCLE . . . PHYSICAL REVIEW E 63 016214
IV. WAVEGUIDE WITH A CIRCLE CAVITY

If we attach leads to the circle billiard, we have a mat
waveguide and the eigenstates of the billiard become
stable and may decay. These unstable states strongly a
the scattering dynamics of the waveguide. They appea
resonances in the transmission probabilities through
waveguide,

Tb5(
a

utabu2, ~22!

for incoming modeb in lead 1, wherea runs over the out-
going modes in lead 2. We can examine the individualTb’s
or consider their sum over all possible incoming modes
lead 1, which is proportional to the Landauer-Bu¨ttiker con-
ductance@13#,

G5
2e2

h (
b

Tb . ~23!

As shown in Ref.@5#, there is an energy range where, f
conical leads, modeb has nonzero transmission, whereas
straight leads with the same opening angles it would still
evanescent. This occurs for energies too small for thebth
transverse standing wave to fit into the lead opening at
junction to the cavity, such that the wave has to ‘‘tunne
into the cavity. The condition for this tunneling~see Ref.@5#!
is k,bp/di , if di52R sin(Dui/2) is the width of the lead
opening~for opening angleDu i). Thus, tunneling occurs fo
energies such that

e, ẽb5
b2p2R2

2di
2

5
b2p2

8 sin2~Du i /2!
, ~24!

wheree is the dimensionless energy defined in Eq.~20!.
In addition to the transmission probabilities an

Landauer-Bu¨ttiker conductance, it is useful to look at th
Wigner delay times,

tn
W5\

]un

]E
, ~25!

where un are the phases of theS-matrix eigenvaluessn
5eiun. The Wigner delay times are a measure of the ti
delay of the electron due to the presence of the cavity. In
following plots, we will use dimensionless delay times

tn5
]un

]e
5

\tn
W

me* R2
. ~26!

~For R'100 nm, tn'20, andme* 50.067me , the Wigner
delay time is of the order of 0.1 ns.! From Ref.@14# it is clear
that peaks in the Wigner delay time correspond to resona
and poles of the scattering matrix in the complex ene
plane. Therefore, we can use peaks in the delay time spe
to indicate the resonances of our system.
01621
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A. Symmetric placement of leads

In Fig. 4, we show numerical data obtained for an elect
waveguide with a circle cavity with symmetrically place
leads, one atu150° and the other atu25180°. Both leads
subtend the same angleDu15Du2520°. The dimensionless
energye is varied in steps of 0.5.

The transmission probability in Fig. 4~a! shows the quan-
tities Tb for incoming modesb51,2 in lead 1. The first
mode (b51) starts transmitting~i.e., becomes significantly
larger than zero! at aboute'20. The second mode star
transmitting too closely below 100 to be visible in the plo
The transmission for higher modes is zero everywhere in
energy interval below 100, and therefore these modes w
not included in the computations or the plot.

The threshold energiesẽb , for which the modes would
start propagating in the case of straight leads withDu520°,
are ẽ1540.91, andẽ25163.66 for the first two channels
This means that for the conical leads, we observe tunne
of the first mode in the energy range betweene'20 and 40.

Examining the correspondence between eigenenergie
the closed circle~indicated by filled circles for degenerat
levels and open circles for nondegenerate levels! and reso-
nances of the open system, one finds that there is obviou
strong association. In energy intervals without eigenenerg
the transmission changes smoothly, whereas there are s
changes close to eigenenergies. In the tunneling regime
see peaks close to the eigenenergies. The peaks tend
slightly shifted to the left. Above the tunneling threshold, w
also observe valleys, e.g., ate567.5,74.7. In this regime
most peaks and valleys in the vicinity of an eigenenergy
too close together to tell which is associated with t
eigenenergy. Since the lead openings themselves alter
geometry of the system, we cannot expect the resonance
be found exactly at the same positions as the eigenener

In Fig. 4~b!, we plot the dimensionless delay timestn .
The energy derivatives at each point are approximated
carrying out two computations for each point, with ener
spacingDe51025. Since the transmission probabilitiesTb
vanish forb>3, we only have to consider the two channe

FIG. 4. ~a! Transmission probability and~b! delay time spectra
for lead openingsDu1520°, Du2520° and lead positionsu1

50° andu25180°. Eigenvalues of the closed circle are marked
filled ~degenerate eigenvalues! and open~nondegenerate eigenva
ues! circles.
4-5
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KATHRIN FUCHSS, SUHAN REE, AND L. E. REICHL PHYSICAL REVIEW E63 016214
b51 andb52. Thus, theSmatrix is a 434 matrix and we
get four eigenphases and four delay time curves.

Here, unlike for the transmission probabilities, we on
need to look forpeaks in the Wigner delay times at th
resonance energies, in the tunneling as well as in the no
regime. The first two time delays display their first pe
arounde'15, the others ate'75. At these energies, th
corresponding transmission probabilities are still too close
zero to produce a visible peak in Fig. 4~a!. This shows that
the delay times are a more sensitive indicator of resonan
than theTb’s.

We see that the degenerate eigenenergies of the c
billiard do not produce double resonances when leads
attached at the special anglesu150° andu25180°. Every
eigenenergy of the circle billiard is associated only with
singledelay time peak. Although placing leads to the circ
cavity destroys its radial symmetry, the breaking of the
generacy is not observed in this case.

B. Asymmetric placement of leads

In Fig. 5, we show the same waveguide, but with asy
metric placement of leads instead of the symmetric pla
ment we had in Fig. 4. Lead 1 is placed atu150° and lead
2 at u25125°.

Now we not only see again the close correspondence
tween delay time peaks and eigenenergies of the circle,
we also observe double peaks at most of the degenerate
liard eigenenergies, most evidently ate524.6, 28.8, 35.4,
38.5, and 49.4. At higher energies, the observation of dou
peaks is more difficult because the second mode starts tr
mitting. ~Some of its first peaks are too small to be seen
the plot, but can be found by looking at the data file.! Many
of the double peaks show a small energy spacing: One p
is slightly shifted to smaller energies, the other one to hig
energies. Here, the degeneracy is obviously broken by
addition of the leads. For the nondegenerate eigenenergie
the other hand, no splitting can be observed. Especiall
e537.4, this becomes very obvious.

FIG. 5. ~a! Transmission probability and~b! delay time spectra
for lead openingsDu1520°, Du2520° and lead positionsu1

50° andu25125°. Eigenvalues of the closed circle are marked
filled ~degenerate eigenvalues! and open~nondegenerate eigenva
ues! circles.
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The difference between this case and the previous c
with symmetric lead placement (u25180°) is that, for sym-
metric placement, we had two discrete symmetries, nam
invariance under the parity transformationsP0° and P90°
@where the parity operators are defined as in Eq.~21!#. When
the leads are placed asymmetrically, the symmetry un
P0° , with respect to the axis bisecting both leads, is d
stroyed, and we are only left with one parity symmetry und
P62.5°. The breaking of one parity symmetry seems to be
reason for the splitting of resonances seen in Fig. 5~b!.

C. Numerical accuracy

To get an estimate of the numerical error, the sum of
absolute values squared of all reflection and transmiss
amplitudes was calculated. Due to the unitarity of theS ma-
trix, this value has to be the dimension of theSmatrix, which
is 4 here. The relative error,

12
1

4 (
a,b51

2

~ ur abu21utabu21ur ab8 u21utab8 u2!, ~27!

was usually smaller than 0.2% for the individual data poin
The errors of the absolute values of theS-matrix eigenvalues
~which should be 1! were of the same order of magnitud
For the delay times, there is no easy way to estimate
error.

The most crucial factor determining numerical accura
was found to be the number 2ng of parameters~expansion
coefficients r ab ,tab ,bnb) used to approximate the tota
wave functionC of our system@see Eqs.~16!, ~A6!, and
~A13!#. An estimate for a suitable choice of this number c
be found by comparing the Fermi wavelength,l f52p/kf ,
to a typical length scale of the system, e.g., the length of
boundary'2pR ~for zero or small cut size!. If we assume
that the total wave function of our system varies rath
smoothly on a length scale ofl f , it seems plausible that a
‘‘small’’ number of parameters, say about 10, should be s
ficient to approximateC on an interval of lengthl f . There-
fore, we expect that such a ‘‘small’’ multiple ofk5kfR
5A2e5‘‘the number of l f intervals needed to cover th
cavity boundary’’ should give a reasonable order of mag
tude estimate for 2ng .

In Fig. 6, we compare the transmission spectra@Fig. 6~a!#
and the spectra of the time delay sums@Fig. 6~b!# for differ-
ent values ofng . As deviations are expected to be mo
pronounced for large cut size, the calculations shown w
done exemplarily for the symmetric cut-circle waveguide
be examined in Sec. V A, atv580°.

We find noticeable deviations forng530 and, to a small
extent, also forng560. The values forng590 practically
coincide with those forng5120. Therefore, in view of com-
putation time, we usedng590 in all computations presente
in this paper.

V. WAVEGUIDE WITH A CUT-CIRCLE CAVITY

We now consider a waveguide with a cut-circle cavi
Figure 7 shows the sum of the partial delay times,t

y
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5(n51
4 tn , and the Landauer-Bu¨ttiker conductanceG. For this

computation, leads and cut are placed asymmetrically.
leads are centered atu150° andu25166°, and the cut a
z5225°. The cut sizev varies from 0°~circle! to 80°, with
step size 5°. The dimensionless energye is varied in steps of
0.25.

In the delay time spectrum~upper plot!, we observe
chains of separated double peaks, corresponding to
split-up branches of degenerate circle eigenenergies. If
compare the positions of maxima in the Wigner delay time
the positions of eigenenergies of the closed system, we fi
good agreement between~open system! resonances and
~closed cavity! eigenenergies.

The conductance~lower plot! shows similar features
However, the first visible chains of resonances occur at
nificantly higher energies than in the delay time plot. F
energies between 20 and 40, both plots show basically
same structures. Above the first tunneling threshold atẽ1
540.91, the conductance reflects the onset of ‘‘norm
~compared to tunneling! transmission of the first mode. I
this energy regime, we cannot tell any more whether re
nances are indicated by peaks or dips in the conductanc

We will now compare the properties of the cut-circle ca
ity waveguide for symmetric and asymmetric lead pla
ments. Note, however, that although this may seem to
analogous to the analysis from the previous section~for the

FIG. 6. ~a! Transmission spectra and~b! spectra of the sum o
partial delay times in the dimensionless energy interval 47.5<e
<52.5, for cut sizev<80°. The lead openings areDu15Du2

516°. Lead and cut positions areu150°, u25120°, and z
5240°. The results for different values ofng are compared.
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full-circle cavity!, the insertion of the cut already leaves
with only one parity symmetry~underPz). As a result, the
‘‘symmetric’’ cut-circle waveguide is analogous to theasym-
metric full-circle waveguide rather than to the symmetr
full-circle waveguide. Finally, in the ‘‘asymmetric’’ cut-
circle waveguide, there are no geometric symmetries pre
at all. Since this could not be achieved by merely plac
two leads to a circle, this case has no parallel in Sec. IV

A. Symmetric placement of leads and cut

Let us examine the Wigner delay times for the ener
range where we found an actual crossing and an avo
crossing in Fig. 2 for the closed cut-circle billiard. We fir
consider a system in which the leads are placed atu150°
and u25120°, symmetrically with respect to the cut atz
5240°. The lead openings areDu15Du2516°. The plot of
the sumt of the Wigner delay times is shown in Fig. 8.

We observe five delay time peaks, which are Fano re
nances resulting from the closed cut billiard eigenstates
1b, 2a, 2b, and 3a shown in Fig. 2. Starting from the left,
label these delay time peaks in the same manner. For cut
v520°, we designate the delay time peaks, going from
to right, as 1b, 2a, 2b, 3a, and 3b. 1a is the resonance c
in the upper left corner. The first two delay time peaks,
and 1b, are Fano resonances resulting from the circle eig
state with (l 53,n52), the following two from (l 56,n51),
and the last two, 3a and 3b, from (l 51,n53).

Again, we observe an avoided crossing between 2b
3a, and the two delay time peaks 2a and 2b actually cr
Like for the closed cavity, the crossing is possible due to

FIG. 7. ~a! Sum of the partial Wigner delay times and~b! con-
ductance for lead openingDu520° and varying cut sizev. The
leads are centered atu150° andu25166°, and the cut is centere
at z5225°.
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parity symmetry of the system, which has been preserved
adding the leads symmetrically with respect to the cut. Si
2a and 2b have different parities, these eigenvalue chains
allowed to cross.

The symmetric placement of leads has not broken
additional symmetries. Only the energies and cut size
which the avoided crossing and actual crossing take place
slightly shifted from the case of the closed cut billiard.

B. Asymmetric placement of leads and cut

In Fig. 9 we show the same Fano resonances as in Fi
but for asymmetric placement of leads. Now we place
leads atu150° andu25166° and the cut atz5225°.

The crossing of resonances 2a and 2b, which occurred
the symmetric leads and for the closed cut-circle billiard, h
now become an avoided crossing.~In fact we now have a
sequence of two closely spaced avoided crossings, simila
the case studied in Ref.@10#.! Here, the parity symmetry o
the closed system is destroyed by placing the leads as
metrically. Therefore, in the asymmetric open system, we
longer have two separate classes of states~namely states of
even and odd parity! and the crossing, which was possible
the closed system and in the symmetric open system
avoided here.

C. Cavity wave functions

We now look at the distribution of electron probability
the cavity at the resonance energies. This is shown in Fig

FIG. 8. Spectrum of the sum of partial delay times for the e
ergy interval 47.5<e<52.5 and cut size interval 20°<v<80°. The
lead openings areDu15Du2516°. Lead and cut positions areu1

50°, u25120°, andz5240°.

FIG. 9. Spectrum of the sum of partial delay times for the e
ergy interval 47.5<e<52.5 and cut size interval 52°<v<80°. The
lead openings areDu15Du2516°. Lead and cut positions areu1

50°, u25166°, andz5225°.
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for the asymmetric system. A three-way avoided cross
has mixed the resonance states, and has destroyed the
tity they had for smaller cut size. The upper row displays
four states before the avoided crossing, which still reflect
quantum numbers of the associated circle states very w
For the middle row, the character of states 2a, 2b, and 3a
been changed. Only the resonance state 1b, which n
comes really close to the crossing region, has preserve
characteristic structure~two rings with six peaks each! quite
well. In the bottom row, after the second avoided crossi
2a and 2b have mixed even further.
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VI. CONCLUSION

In this paper, we investigated a waveguide with a c
circle cavity by calculating conductances and Wigner de
times. We attached conic leads to the cavity in two wa
symmetrically and asymmetrically. We observed two kin
of avoided crossings when the leads were placed asymm
cally, breaking the parity symmetry of the closed cavity. O
avoided crossing was due to the chaos of the closed ca
i.e., due to level repulsions between states in the same s
metry class, which are known to occur for fully chaotic sy
tems. The other avoided crossing was due to the breakin

-

-

FIG. 10. Electron probability distribution in the waveguide ca
ity at the resonance energy for Fano resonances shown in Fi
The lead openings areDu15Du2516°. Lead and cut positions ar
u150°, u25166°, andz5225°. The top row hasv550° and con-
sists of~a! state 1b fore547.8,~b! state 2a fore549.2,~c! state 2b
for e550.2, and~d! state 3a fore551.1. The middle row hasv
568° and consists of~e! state 1b fore548.5, ~f! state 2a fore
550.7, ~g! state 2b fore551.3, and~h! state 3a fore552.3. The
bottom row hasv578° and consists of~i! state 1b fore549.2,~j!
state 2a fore550.7, ~k! state 2b fore552.2.
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the discrete symmetry~the parity in our case! by placing
leads asymmetrically~see Fig. 9!.

There is now great interest in exploring the effects
underlying chaos on the dynamics of open quantum syste
However, open quantum systems must make contact with
outside world. This contact itself may induce some of t
signatures of chaos. This fact has also been studied ex
sively by Jung and Seligman@15# for classical scattering sys
tems. The avoided crossing between 2a and 2b, show
Fig. 9, provides another example of this effect.

APPENDIX: NUMERICAL METHOD

1. Basic concept

In order to obtain an explicit expression for theS matrix,
we need to find the stationary solutionsC of Eq. ~1!. This
can only be done numerically for our system. For that p
pose, we use the boundary integral method described in
@16#. Below, we will give an outline of this method adapte
to our particular problem.

The boundary integral method is based on the use
Green’s theorem, which, for two functionsf andg, states that

R
G
dlS f

]g

]n
2

] f

]n
gD5E

A
dA8~ f ¹2g2g¹2f !, ~A1!

if G is a closed contour confining an areaA, l is the longitu-
dinal coordinate alongG, andn is the normal coordinate. Fo
the boundary integral method, we choose for the functionf
and g the wave functionC and a weight functionF that
satisfies the Helmholtz equation

¹2F52k2F. ~A2!

Then, sinceC is a solution of the Schro¨dinger equation@Eq.
~1!#, i.e., C also satisfies¹2C52k2C, the right-hand side
of Eq. ~A1! is identically zero. Therefore, we get

R
G
dlS C

]F

]n
2

]C

]n
F D50 ~A3!

as the basic equation of this numerical approach.~Note that
the difference betweenC andF is that there are no bound
ary conditions forF, whereasC has to satisfy the boundar
conditions imposed by the geometry of the waveguide.!

For our problem, we chooseG to follow the walls of the
cavity. For the places where the leads come in,G is taken to
be the continuation of the circular wall segments in order
construct a closed contour. Then, Eq.~A3! allows us to ob-
tain theS matrix and the probability distribution inside th
cavity for any incoming particle energy. This is done
inserting~approximate! expansions ofC with, say,ncutoff yet
unknown expansion coefficients. As we needncutoff equa-
tions to solve for these expansion coefficients, we apply
~A3! with sufficiently many different weight functionsFn
(n51, . . . ,ncutoff).

In principle, there are several choices possible for
Fn’s, as long as they satisfy Eq.~A2!. For numerical conve-
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nience, we used the same functions as for the expansio
C inside the cavity, namelyFg5 f g with the f g’s given by
Eq. ~3!, whereg52ng11, . . . ,ng ~i.e., ncutoff52ng). For
ng , we also used the same value as in Sec. II A,ng590,
which allows us to determinencutoff5180 expansion coeffi-
cients.

2. S matrix

In order to compute theSmatrix, we split upG into parts
C1 ,C2 across the lead openings,P1 ,P2 ,P3 along the circu-
lar walls, andP0 along the cut~see Fig. 11!.

We first consider a partI C of the integral in Eq.~A3!, for
which we only integrate over the lead openingsC1 and C2
instead ofG. Inserting forF the f g’s and forC its expansion
into lead channels from Eq.~16! ~for an electron incident in
channelb in lead 1!, we obtain

I C5E
C1

dlS xb
2

] f g

]n
2

]xb
2

]n
f gD 1(

a
r abE

C1

dlS xa
1

] f g

]n

2
]xa

1

]n
f gD 1(

a
tabE

C2

dlS xa
1

] f g

]n
2

]xa
1

]n
f gD

5~z0
12!gb2~zL

12!gb1(
a

r ab@~z0
11!ga2~zL

11!ga#

1(
a

tab@~z0
21!ga2~zL

21!ga#, ~A4!

where we introduced the abbreviations

~zL
i 6!ga[E

Ci

dl
]xa

i 6

]n
f g ,

~z0
i 6!ga[E

Ci

dl xa
i 6 ] f g

]n
, ~A5!

FIG. 11. Integration contour for the cut-circle waveguide, co
sisting ofC1 ,C2 ,P0 ,P1 ,P2, andP3.
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with i 51, 2 denoting lead 1 and 2.~For an electron inciden
in lead 2, the expressions look similar.!

Along the walls of the cavity, the electron wave functio
is zero, but it may have a finite slope perpendicular to
wall. We can expand this slope in terms of a complete
thonormal basis along the wall. Therefore, we can write

Cb,Pi
50,

S ]Cb

]n D
Pi

5(
n

bnb
( i )jn

( i )~ l !, ~A6!

with some set of basis functionsjn
( i ) in variablel. The index

i 50 is used to denote the cut, andi 51,2,3 denote the thre
,

tri
a

01621
e
r-

different circular wall segments. We are free to choose a
complete basis, and for the circular wall segments we cho
a Fourier basis,

jn
( i )~ l !5A 2

D i
cosFpnS l 2d i1

D i

2 D
D i

G , ~A7!

whered i is the angular position of the center of wall segme
i 51,2,3, D i is its opening angle,n50,1, . . . , andd i2D i /2
< l ,d i1D i /2. For the cut, we could use the Fourier bas
too. However, as this results in very long computation tim
a basis of small triangles proved to be more efficient. Th
along the straight wall we use
jn
(0)~ l !5

2~nn0
11!

l 0 5
l 2

n

nn0
11

l 0 , if
n

nn0
11

l 0< l ,
n11/2

nn0
11

l 0 ;

n11

nn0
11

l 02 l if
n11/2

nn0
11

l 0< l ,
n11

nn0
11

l 0 ;

0, otherwise,

~A8!
nd
ed.

nd

ix
is

he
for 0< l , l 0, wherel 052R sin(v/2) is the length of the cut
v is its opening angle, andn50,1, . . . ,nn0

. Now we can

write down the partI P of the integral in Eq.~A3!, for which
we only integrate over the wall segmentsP0 , . . . ,P3 instead
of G. Inserting the expansions from Eq.~A6!, we get

I P52(
i 50

3

(
n

bnb
( i ) E

Pi

dl jn
( i ) f g52(

i 50

3

(
n

bnb
( i ) ~xi !gn ,

~A9!

with the abbreviation

~xi !gn[E
Pi

dl jn
( i )~ l ! f g . ~A10!

Now we can combine these results to obtain a ma
equation for the unknown expansion coefficients, which c
easily be solved numerically. With the integralsI C and I P ,
Eq. ~A3! becomesI C1I P50. Inserting Eqs.~A4! and ~A9!
yields ~after a slight reordering of terms!

(
a

@~z0
11!ga2~zL

11!ga#r ab 1 (
a

@~z0
21!ga2~zL

21!ga#tab

1(
i 50

3

(
n

~2xi !gnbnb
( i ) 52@~z0

12!gb2~zL
12!gb#,

~A11!

or, in compact matrix form
x
n

~Z0
12ZL

12X!S r

t

b
D

b

5~zL
22z0

2!b . ~A12!

The matricesZ0
1 , ZL

1 , andX, as well as the column matrix
(zL

22z0
2)b can be computed numerically from Eqs.~A5! and

~A10!. Note that in order to include both leads (i 51,2) in
Z0

1 andZL
1 , the first columns of these matrices correspo

to lead 1, and the columns for lead 2 are simply append
~Similarly, X is composed of the different wall parts,i
50, . . . ,3,also columnwise.!

The quantity

S r

t

b
D

b

is a column matrix containing the unknown transmission a
reflection coefficients for a particle incident in channelb in
lead 1, as well as the coefficientsbnb

( i ) , which describe the
normal derivative ofCb on the walls. As this is the quantity
which we want to solve for, we need to invert the matr
(Z0

12ZL
12X). Therefore, this matrix has to be square. Th

can be achieved by using appropriate cutoff numbersna i
( i

51,2) in the lead expansions@Eq. ~16!# and nn i
( i

50, . . . ,3) in thewall expansions@Eq. ~A6!#. Since the ma-
trix consists of 2ng rows, these numbers have to satisfy t
relation
4-10
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(
i 51

2

na i
1(

i 50

3

~nn i
11!52ng . ~A13!

~Note that n50, . . . ,nn i
, therefore we actually sum ove

nn i
11 terms for the wall parts.! For best numerical accuracy

the relations of the cutoff numbers are chosen approxima
equal to the length relations of the corresponding integra
paths.

3. Cavity probability amplitude

Once the elements of theS matrix have been obtained b
the method described above, it is an easy task to calculat
probability amplitude for the electron state inside the cav
We know that the wave function, which, inside the cavity,
described by Eq.~2!, is zero along all the walls and that
continuous at the interface between the leads and the ca
Thus we require that along the walls,
C.
,

n,

S

01621
ly
n

the
.

ty.

(
g

cgb f g~r,w!50, ~A14!

and along the interfaceC1 and C2 between the leads an
cavity

(
g

cgb f g~r,w!5Cb~r,w!, ~A15!

where Cb ~in the leads, for incoming modeb) is known
from the previous section. It is straightforward to solve f
the cgb’s, e.g., by evaluating the above expressions at 2ng

different points onG, and inverting the resulting system o
linear equations.
.
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